Spontaneous shape reconfigurations in multicompartmental microcylinders.

نویسندگان

  • Kyung Jin Lee
  • Jaewon Yoon
  • Sahar Rahmani
  • Sangyeul Hwang
  • Srijanani Bhaskar
  • Samir Mitragotri
  • Joerg Lahann
چکیده

Nature's particles, such as spores, viruses or cells, are adaptive--i.e., they can rapidly alter major phenomenological attributes such as shape, size, or curvature in response to environmental changes. Prominent examples include the hydration-mediated opening of ice plant seeds, actuation of pine cones, or the ingenious snapping mechanism of predatory Venus flytraps that rely on concave-to-convex reconfigurations. In contrast, experimental realization of reconfigurable synthetic microparticles has been extremely challenging and only very few examples have been reported so far. Here, we demonstrate a generic approach towards dynamically reconfigurable microparticles that explores unique anisotropic particle architectures, rather than direct synthesis of sophisticated materials such as shape-memory polymers. Solely enabled by their architecture, multicompartmental microcylinders made of conventional polymers underwent active reconfiguration including shape-shifting, reversible switching, or three-way toggling. Once microcylinders with appropriate multicompartmental architectures were prepared by electrohydrodynamic cojetting, simple exposure to an external stimulus, such as ultrasound or an appropriate solvent, gives rise to interfacial stresses that ultimately cause reversible topographical reconfiguration. The broad versatility of the electrohydrodynamic cojetting process with respect to materials selection and processing suggests strategies for a wide range of dynamically reconfigurable adaptive materials including those with prospective applications for sensors, reprogrammable microactuators, or targeted drug delivery.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Microcylinders within Mitochondrial Cristae in the Rat Pinealocyte

A minute cylindrical structure with a dense core, designated as "microcylinder," has been observed within enlarged spaces of mitochondrial cristae in pinealocytes of some adult rats (osmium tetroxide fixed, methacrylate embedded). The microcylinders are 270 to 330 A in diameter and of indeterminate length. Their wall is found to be made up of slender filamentous subunits, probably 6 in number, ...

متن کامل

The Fine Structure and Arrangement of Microcylinders in the Lumina of Flagellar Fibers in Cricket Spermatids

Flagellar structure in spermatids of several species of cricket was studied with the electron microscope. The flagella of mid-spermatids contain the usual 9 + 2 set of fibers and a set of nine accessory fibers. At first all are hollow, then the lumina become filled with an electron-opaque matrix material in which narrow electron-lucent microcylinders are embedded. The accessory fibers and one c...

متن کامل

Chemically controlled bending of compositionally anisotropic microcylinders.

Soft materials that can undergo mechanical actuation in response to external stimuli, such as changes in temperature, light, pH value, or ionic strength, have attracted increasing attention because of their potential use as thinfilm actuators, smart sutures, and soft robots. These materials typically require specialty polymers, such as shape-memory polymers or use macroscopically layered films....

متن کامل

Discontinuous spectral element method modeling of optical coupling by whispering gallery modes between microcylinders.

We introduce a high-order time-domain discontinuous spectral element method for the study of the optical coupling by evanescent whispering gallery modes between two microcylinders, the building blocks of coupled resonator optical waveguide devices. By using the discontinuous spectral element method with a Dubiner orthogonal polynomial basis on triangles and a Legendre nodal orthogonal basis on ...

متن کامل

Flapping flexible fish Periodic and secular body reconfigurations in swimming lamprey, Petromyzon marinus

In order to analyze and model the body kinematics used by fish in a wide range of swimming behaviors, we developed a technique to separate the periodic whole-body motions that characterize steady swimming from the secular motions that characterize changes in whole-body shape. We applied this harmonic analysis technique to the study of the forward and backward swimming of lamprey. We found that ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 109 40  شماره 

صفحات  -

تاریخ انتشار 2012